真実的なGenerative-AI-Leader試験時間試験-試験の準備方法-信頼的なGenerative-AI-Leader試験勉強過去問
2025年JPNTestの最新Generative-AI-Leader PDFダンプおよびGenerative-AI-Leader試験エンジンの無料共有:https://drive.google.com/open?id=1ozxW9wyYAS94PXWllDVh8dbxQ8ZDJL5w
JPNTestがGoogleのGenerative-AI-Leaderのサンプルの問題のダウンロードを提供して、あなはリスクフリーの購入のプロセスを体験することができます。これは試用の練習問題で、あなたにインタフェースの友好、問題の質と購入する前の価値を見せます。弊社はJPNTestのGoogleのGenerative-AI-Leaderのサンプルは製品の性質を確かめるに足りて、あなたに満足させると信じております。あなたの権利と利益を保障するために、JPNTestは一回で合格しなかったら、全額で返金することを約束します。弊社の目的はあなたが試験に合格することに助けを差し上げるだけでなく、あなたが本物のIT認証の専門家になることを願っています。あなたが仕事を求める競争力を高めて、自分の技術レベルに合わせている技術職を取って、気楽にホワイトカラー労働者になって高い給料を取ることをお祈りします。
Google Generative-AI-Leader 認定試験の出題範囲:
トピック
出題範囲
トピック 1
トピック 2
トピック 3
トピック 4
>> Generative-AI-Leader試験時間 <<
最新のGenerative-AI-Leader試験時間一回合格-高品質なGenerative-AI-Leader試験勉強過去問
当社GoogleのGenerative-AI-Leader学習ツールでは、選択できる3つのバージョンがあり、PDFバージョン、PCバージョン、APPオンラインバージョンが含まれます。各バージョンはさまざまな状況や機器に対応しており、最も便利な方法を選択してGenerative-AI-Leaderテストトレントを学習できます。たとえば、APPオンラインバージョンは印刷可能で、ダウンロードへの即時アクセスを促進します。 Generative-AI-Leaderガイドトレントはいつでもどこでも学習できます。 Generative-AI-Leader学習ツールのPCバージョンは、実際の試験のシナリオを刺激できます。 365日間の無料アップデートと無料デモを提供しています。
Google Cloud Certified - Generative AI Leader Exam 認定 Generative-AI-Leader 試験問題 (Q45-Q50):
質問 # 45
The office of the CISO wants to use generative AI (gen AI) to help automate tasks like summarizing case information, researching threats, and taking actions like creating detection rules. What agent should they use?
正解:A
解説:
Given the tasks involve researching threats and creating detection rules, the most appropriate and specialized agent would be a Security agent. This type of agent would be pre-configured or easily adaptable to understand security-specific contexts, data, and actions within a CISO's domain.
________________________________________
質問 # 46
A finance team wants to use Gemma to help with daily tasks so that the financial analysts can focus on other work. Which business problem can Gemma most efficiently address?
正解:B
解説:
Gemma is a family of lightweight, open-source Large Language Models (LLMs) from Google that are based on the same research and technology as the Gemini models. As an LLM, its core strength lies in language-based tasks, particularly the generation and summarization of text.
The problem that Gemma, or any pure LLM, can most efficiently address is:
Generating text: creating new content quickly (Option D).
Summarizing text: condensing long communications or documents (Option D).
Option D, producing high-quality written summaries and initial drafts, is a natural language generation task that aligns perfectly with the core function of an LLM like Gemma. It is a key productivity booster for analysts needing to draft reports or emails quickly.
Option B (Analyzing large datasets/predicting performance) requires traditional machine learning (ML) models or analytical tools like BigQuery ML, as LLMs are not specialized for numerical predictive modeling.
Option C (Extracting key financial figures from documents) is a task for a highly specialized tool like Google's Document AI.
Option A (Building internal knowledge bases for Q&A) is a broader use case that is best solved with a platform solution using RAG, such as Vertex AI Search, not just a base model.
(Reference: Google's description of the Gemma model family emphasizes its role as a flexible, open LLM that excels at language fundamentals, making it ideal for content creation, summarization, and other text generation tasks.)
質問 # 47
A user asks a generative AI model about the scientific accuracy of a popular science fiction movie. The model confidently states that humans can indeed travel faster than light, referencing specific but entirely fictional theories and providing made-up explanations of how this is achieved according to the movie's "established science." The model presents this information as factual, without indicating that it originates from a fictional work. What type of model limitation is this?
正解:C
解説:
The limitation described is the AI model generating a false or misleading response (humans traveling faster than light is scientifically impossible/unproven) and presenting it as fact (confidently stating a fictional theory is real) without the ability to indicate its uncertainty or the source's fictional nature. This is the definition of a Hallucination in generative AI.
AI Hallucinations occur when a Large Language Model (LLM) generates outputs that are factually incorrect, irrelevant, or nonsensical, despite being linguistically fluent and seemingly plausible. They arise because the model is designed to predict the most statistically probable next word or token based on its training data, even when it lacks information or when its training data contains a mixture of fact and fiction. The model is overconfident in its generated response, a behavior that diminishes user trust and reliability, especially in applications where factual accuracy is critical. While a knowledge cutoff (B) is a common cause of hallucinations when an LLM is asked about recent events, the core limitation of fabricating facts from its own hardwired knowledge is the hallucination itself. Data dependency (A) relates to the model's reliance on the quality and completeness of its training data, and while flawed training data can be a cause, the error mode of inventing facts is the Hallucination.
質問 # 48
What does a diffusion model do?
正解:B
解説:
A Diffusion Model (or Denoising Diffusion Probabilistic Model) is a specific class of generative AI model that is best known for its ability to create highly realistic images (e.g., Google's Imagen and Stable Diffusion are based on this architecture).
The core mechanism of a diffusion model is a two-step process:
Forward Diffusion (Adding Noise): It learns how to gradually corrupt data (like an image) by adding random noise until the original content is completely indistinguishable.
Reverse Diffusion (Denoising): It then learns to reverse this process-to gradually remove the noise-starting from a random noise pattern and iteratively refining it, guided by a text prompt, until a clear, coherent, and high-quality piece of content (an image or video) is generated.
Option D accurately captures this mechanism: the model starts with pure noise and generates the final structured data (the image) by refining that noise.
Option A describes predictive AI (forecasting models).
Option C describes a database or storage service.
Option B describes a workflow agent or optimization AI.
(Reference: Google's training materials on Foundation Models define Diffusion Models as generative models that operate by gradually converting a state of random noise into a structured, meaningful output, most commonly for the generation of high-quality images and video.)
質問 # 49
A social media platform uses a generative AI model to automatically generate summaries of user-submitted posts to provide quick overviews for other users. While the summaries are generally accurate for factual posts, the model occasionally misinterprets sarcasm, satire, or nuanced opinions, leading to summaries that misrepresent the original intent and potentially cause misunderstandings or offense among users. What should the platform do to overcome this limitation of the AI-generated summaries?
正解:B
解説:
When AI struggles with nuances like sarcasm or satire, human oversight is often the most effective solution.
A human-in-the-loop (HITL) process allows human reviewers to check, correct, and refine AI-generated content before it is published, ensuring accuracy and appropriateness, especially for sensitive or complex language.
________________________________________
質問 # 50
......
GoogleのGenerative-AI-Leader認定試験と言ったら、人々は迷っています。異なる考えがありますが、要約は試験が大変難しいことです。GoogleのGenerative-AI-Leader認定試験は確かに難しい試験ですが、JPNTest を選んだら、これは大丈夫です。JPNTestのGoogleのGenerative-AI-Leader試験トレーニング資料は受験生としてのあなたが欠くことができない資料です。それは受験生のために特別に作成したものですから、100パーセントの合格率を保証します。信じないになら、JPNTestのサイトをクリックしてください。購入する人々が大変多いですから、あなたもミスしないで速くショッピングカートに入れましょう。
Generative-AI-Leader試験勉強過去問: https://www.jpntest.com/shiken/Generative-AI-Leader-mondaishu
2025年JPNTestの最新Generative-AI-Leader PDFダンプおよびGenerative-AI-Leader試験エンジンの無料共有:https://drive.google.com/open?id=1ozxW9wyYAS94PXWllDVh8dbxQ8ZDJL5w